Course 1 / Course 2 generalities, The OSI Model, Network devices TCP/IP MODEL, The Networking Media, TCP/IP Math Introduction to TCP/IP Addresses, Subnetting Exercices VLSM, Summarization

What is Routing? What is a Routing Protocol? Distance Vector - RIP

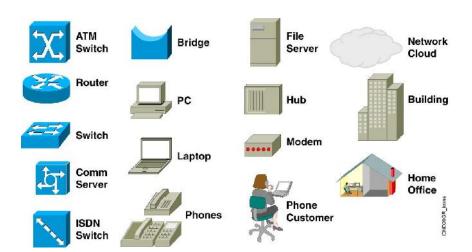
Annexes:

Routers & Cisco IOS

Router Configuration

Course 3 / Course 4

VD vs link state - OSPF


Switching, STP, Switch Configuration, Vlans

NAT: Network Address Translator

Internet services: exemples dhcp, dns, ftp, HTTP; mail

CISCO

Icons and Symbols

1 1.1 1.

Businesses needed a solution that would successfully address the following three problems:

- How to avoid duplication of equipment and resources
- How to communicate efficiently
- How to set up and manage a network

Businesses realized that networking technology could increase productivity while saving money.

Equipment that connects directly to a network segment is referred to as a device.

These devices are broken up into two classifications.

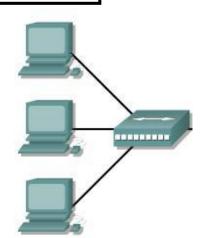
- ☐ End-user devices
- □ Network devices

End-user devices include computers, printers, scanners, and other devices that provide services directly to the user.

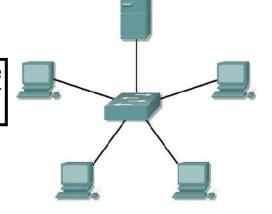
Network devices include all the devices that connect the enduser devices together to allow them to communicate.

Network Interface Card

A network interface card (NIC) is a printed circuit board that provides network communication capabilities to and from a personal computer. Also called a LAN adapter.



CISCO



aliala CISCO

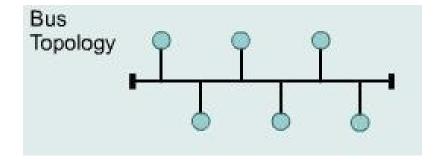
Connects a group of Hosts

Switches add more intelligence to data transfer management.

of tel to

□Routers are used to connect networks together □Route packets of data from one network to another □Cisco became the de facto standard of routers because of their highquality router products □Routers, by default, break up a broadcast domain

Network topology defines the structure of the network.

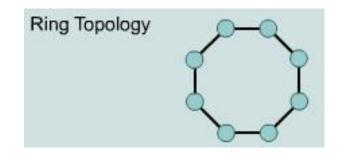

One part of the topology definition is the physical topology, which is the actual layout of the wire or media.

The other part is the logical topology, which defines how the media is accessed by the hosts for sending data.

Bus Topology

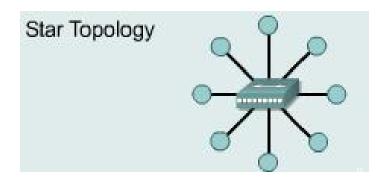
□A bus topology uses a single backbone cable that is terminated at both ends.

□All the hosts connect directly to this backbone.



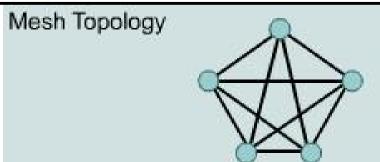
Ring Topology

□A ring topology connects one host to the next and the last host to the first.


☐This creates a physical ring of cable.

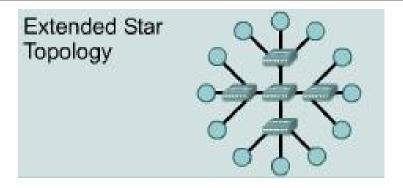
Star Topology

□A star topology connects all cables to a central point of concentration.



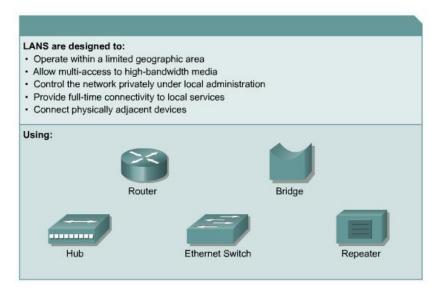
Mesh Topology

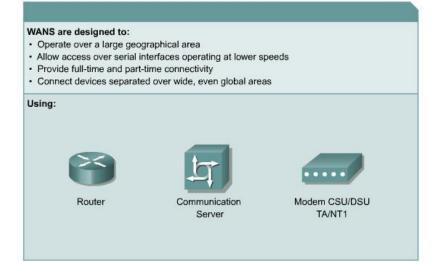
□A mesh topology is implemented to provide as much protection as possible from interruption of service.


□Each host has its own connections to all other hosts.

□ Although the Internet has multiple paths to any one location, it does not adopt the full mesh topology.

□An extended star topology links individual stars together by connecting the hubs and/or switches. This topology can extend the scope and coverage of the network.

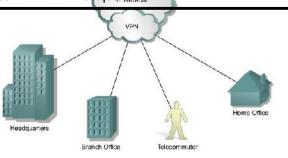

LANS, MANS, & WANS


cisco.

□One early solution was the creation of local-area network (LAN) standards which provided an open set of guidelines for creating network hardware and software, making equipment from different companies compatible.

□What was needed was a way for information to move efficiently and quickly, not only within a company, but also from one business to another.

☐The solution was the creation of metropolitan-area networks (MANs) and wide-area networks (WANs).



*Virtual Private Network

CISCO

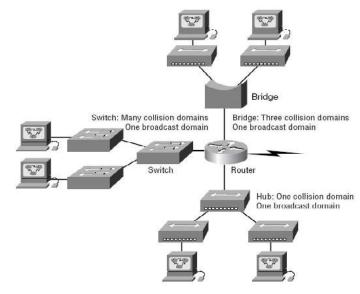
A VPN is a private network that is constructed within a public network infrastructure such as the global Internet. Using VPN, a telecommuter can access the network of the company headquarters through the Internet by building a secure tunnel between the telecommuter's PC and a VPN router in the headquarters.

CISCO

Why bandwidth is important:

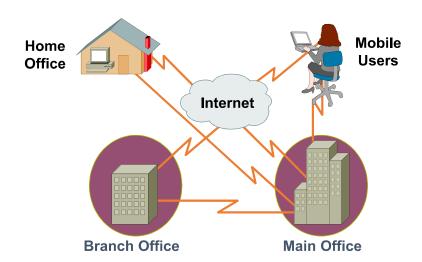
- · Bandwidth is limited by physics and technology
- · Bandwidth is not free
- · Bandwidth requirements are growing at a rapid rate
- · Bandwidth is critical to network performance

Bandwidth is like the number of lanes on a highway.



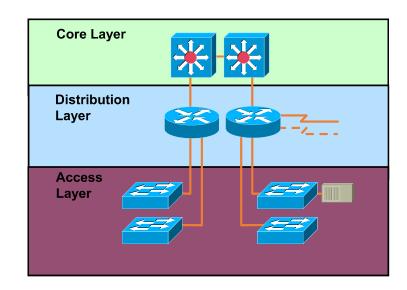
Measuring Bandwidth

Unit of Bandwidth	Abbreviation	Equivalence
Bits per second	bps	1 bps = fundamental unit of bandwidth
Kilobits per second	kbps	1 kbps = ~1,000 bps = 10 ³ bps
Megabits per second	Mbps	1 Mbps = ~1,000,000 bps = 10 ⁶ bps
Gigabits per second	Gbps	1 Gbps = ~1,000,000,000 bps = 10 ⁹ bps
Terabits per second	Tbps	1 Tbps = ~1,000,000,000,000 bps = 10 ¹² bps


Internetworking Devices

efrei

CISCO


What Are The Components Of A Network?

CISCO

Network Structure & Hierarchy

Institute of Electrical and Electronics Engineers (IEEE) 802 Standards

□IEEE 802.1: Standards related to network management.

□IEEE 802.2: General standard for the data link layer in the OSI Reference Model. The IEEE divides this layer into two sublayers -- the logical link control (LLC) layer and the media access control (MAC) layer.

□IEEE 802.3: Defines the MAC layer for bus networks that use CSMA/CD. This is the basis of the Ethernet standard.

□IEEE 802.4: Defines the MAC layer for bus networks that use a token-passing mechanism (token bus networks).

□IEEE 802.5: Defines the MAC layer for token-ring networks.

□IEEE 802.6: Standard for Metropolitan Area Networks (MANs)

efre

CISCO

Why do we need the OSI Model?

□ To address the problem of networks increasing in size and in number, the International Organization for Standardization (ISO) researched many network schemes and recognized that there was a need to create a network model

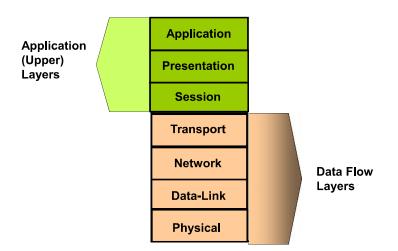
□This would help network builders implement networks that could communicate and work together

□ISO therefore, released the OSI reference model in 1984.

CISCO

- ISO International Organization for Standardization
- OSI Open System Interconnection
- IOS Internetwork Operating System

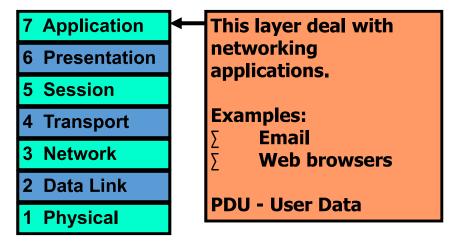
To avoid confusion, some people say "International Standard Organization."


efrei

OSI Model

The OSI Model will be used throughout your entire networking career!

Memorize it!



Layer 7 - The Application Layer

CISCO

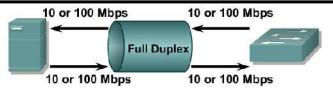
Layer 6 - The Presentation Layer

CISCO

7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Data Link
1 Physical

This layer is responsible for presenting the data in the required format which may include:
□Code Formatting
□Encryption
□Compression

PDU - Formatted Data

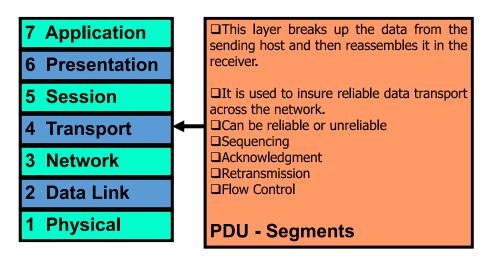

Each of the layers have Protocol Data Unit (PDU)

Application ☐This layer establishes, manages, and terminates sessions between two communicating hosts. 6 Presentation □Creates Virtual Circuit □Coordinates communication between systems 5 Session □Organize their communication by offering three different modes 4 Transport □ Simplex ☐ Half Duplex 3 Network □Full Duplex 2 Data Link **Example: Physical** Client Software (Used for logging in) **PDU - Formatted Data**

Full Duplex

In a network that uses twisted-pair cabling, one pair is used to carry the transmitted signal from one node to the other node. A separate pair is used for the return or received signal. It is possible for signals to pass through both pairs simultaneously. The capability of communication in both directions at once is known as full duplex.

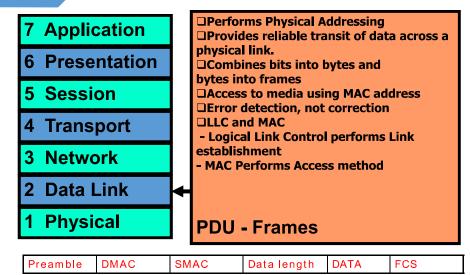
- Doubles bandwidth between nodes
- · Collision-free transmission
- · Two 10- or 100- Mbps data paths

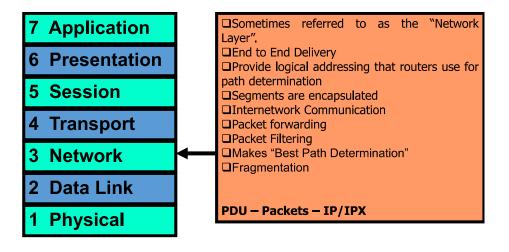

Half Duplex

- ■It uses only one wire pair with a digital signal running in both directions on the wire.
- ■It also uses the CSMA/CD protocol to help prevent collisions and to permit retransmitting if a collision does occur.
- If a hub is attached to a switch, it must operate in halfduplex mode because the end stations must be able to detect collisions.
- ► Half-duplex Ethernet—typically 10BaseT—is only about 30 to 40 percent efficient because a large 10BaseT network will usually only give you 3 to 4Mbps—at most.

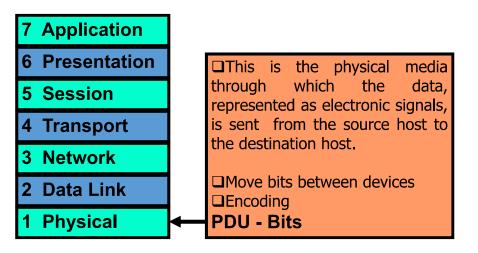
Layer 4 - The Transport Layer

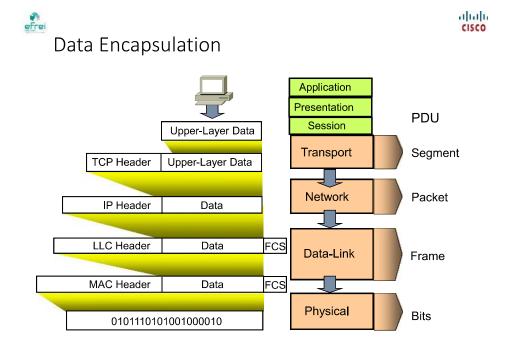
CISCO

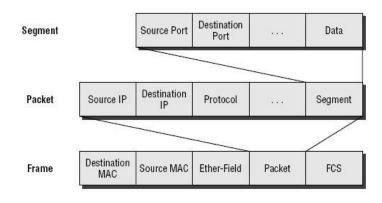

of fel to



d tel te


CISCO





Data Encapsulation

Bit 1011011100011110000

After riding your new bicycle a few times in Villejuif, you decide to give it to a friend who lives in Rabat.

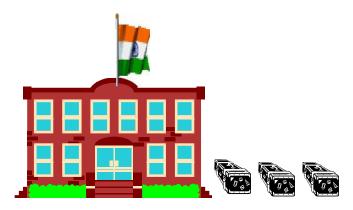
OSI Model Analogy Presentation Layer - Source Host

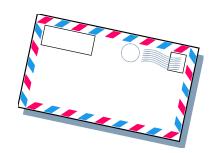
Make sure you have the proper directions to disassemble and reassemble the bicycle.

CISCO

OSI Model Analogy Session Layer - Source Host

Call your friend and make sure you have his correct address.





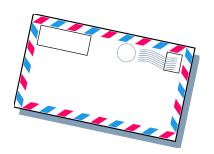
Disassemble the bicycle and put different pieces in different boxes. The boxes are labeled "1 of 3", "2 of 3", and "3 of 3".

OSI Model Analogy Data Link Layer – Source Host

Villejuif post office takes possession of the boxes.

Put your friend's complete mailing address (and yours) on each box. Since the packages are too big for your mailbox (and since you don't have enough stamps) you determine that you need to go to the post office.

OSI Model Analogy Physical Layer - Media


The boxes are flown from Orly to Rabat.

OSI Model Analogy Data Link Layer - Destination

Rabat post office receives your boxes.

OSI Model Analogy Network Layer - Destination

Upon examining the destination address, Rabat post office determines that your boxes should be delivered to your written home address.

OSI Model Analogy Transport Layer - Destination

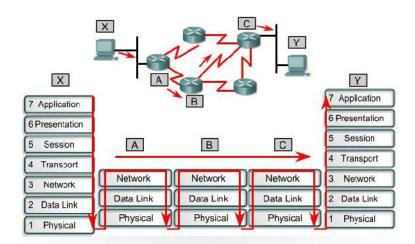
Your friend calls you and tells you he got all 3 boxes and one of his friend named BOB is reassembling the bicycle.

CISCO

OSI Model Analogy Session Layer - Destination

Your friend hangs up because he is done talking to you.

After finishing to reassemble the bicycle, your friend receives his present.



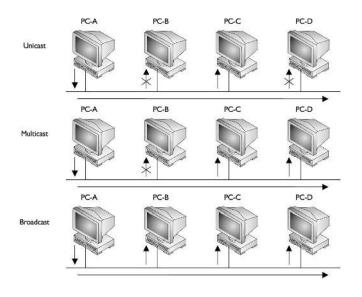
Your friend enjoys riding his new bicycle in Rabat.

Data Flow Through a Network

Data flow in a network focuses on layers one, two and three of the OSI model. This is after being transmitted by the sending host and before arriving at the receiving host.

1 11 1

Type of Transmission


□Unicast

□Multicast

□Broadcast

Type of Transmission

Broadcast Domain

- □A group of devices receiving broadcast frames initiating from any device within the group
- □Routers do not forward broadcast frames, broadcast domains are not forwarded from one broadcast to another.

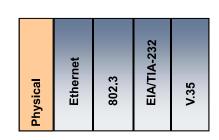
CISCO

cisco.

Collision

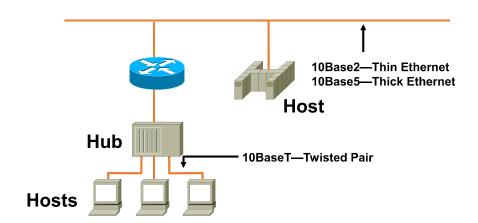
☐ The effect of two nodes sending transmissions simultaneously in Ethernet. When they meet on the physical media, the frames from each node collide and are damaged.

Collision Domain


- ☐ The network area in Ethernet over which frames that have collided will be detected.
- □Collisions are propagated by hubs and repeaters
- □Collisions are **Not** propagated by switches, routers, or bridges

1 11 1

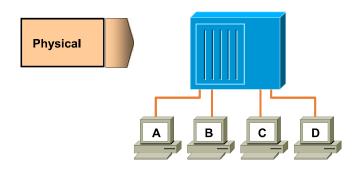
Physical Layer


Defines

- Media type
- Connector type
- Signaling type

802.3 is responsible for LANs based on the Carrier Sense Multiple Access Collision Detect access methodology.

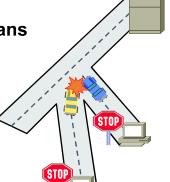
Ethernet is an example of a CSMA/CD network.



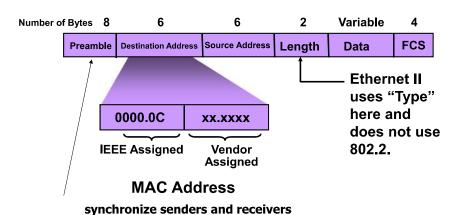
Physical Layer: Ethernet/802.3

CISCO

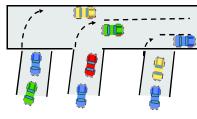
Device Used At Layer 1



- All devices are in the same collision domain.
- All devices are in the same broadcast domain.
- Devices share the same bandwidth.

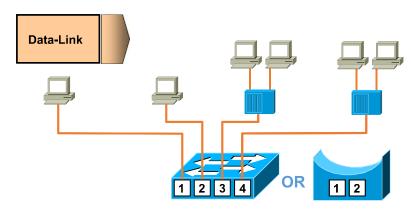

Hubs & Collision Domains

More end stations means more collisions.
CSMA/CD is used.


1 11 1

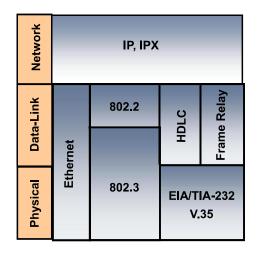
MAC Layer—802.3





- Each segment is its own collision domain.
- Broadcasts are forwarded to all segments.

Devices On Layer 2: (Switches & Bridges)


- Each segment has its own collision domain.
- All segments are in the same broadcast domain.

Layer 3: Network Layer

- Defines logical source and destination addresses associated with a specific protocol
- Defines paths through network

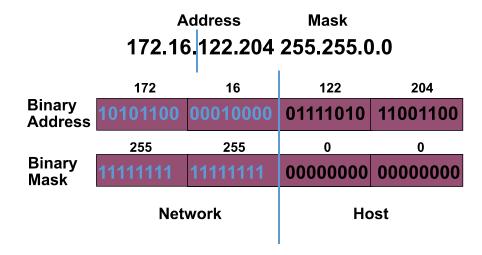
Layer 3: (cont.): IP packet and address.

Network Layer End-Station Packet

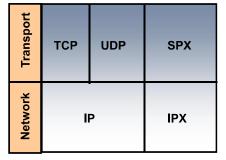
IP Header	Source Address	Destination Address	Data
Address	72.15.	1.1 Node	

- □ Route determination occurs at this layer, so a packet must include a source and destination address.
- □ Network-layer addresses have two components: a network component for internetwork routing, and a node number for a device-specific address.

dul

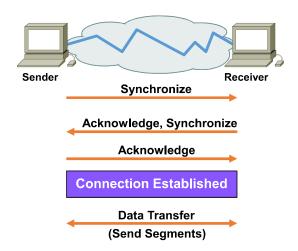

CISCO

- Broadcast control
- Multicast control
- Optimal path determination
- Traffic management
- Logical addressing
- Connects to WAN services


Layer 3 (cont.)

Layer 4: Transport Layer

- Distinguishes between upper-layer applications
- Establishes end-to-end connectivity between applications
- Defines flow control
- Provides reliable or unreliable services for data transfer



Hub

Router

Reliable Service

Collision Domains:

Broadcast Domains:

1

Devices: How They Operate?

Bridge

1

Switch

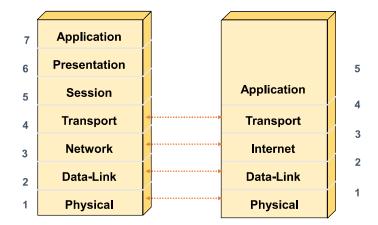
1

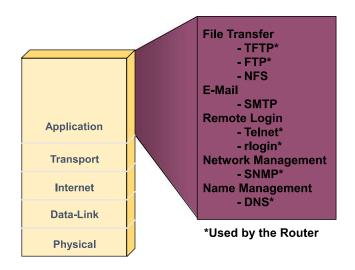
1 11 1

Although the OSI reference model is universally recognized, the historical and technical open standard of the Internet is Transmission Control Protocol / Internet Protocol (TCP/IP).

The TCP/IP reference model and the TCP/IP protocol stack make data communication possible between any two computers, anywhere in the world, at nearly the speed of light.

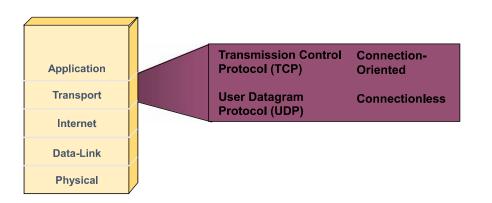
The U.S. Department of Defense (DoD) created the TCP/IP reference model because it wanted a network that could survive any conditions, even a nuclear war.





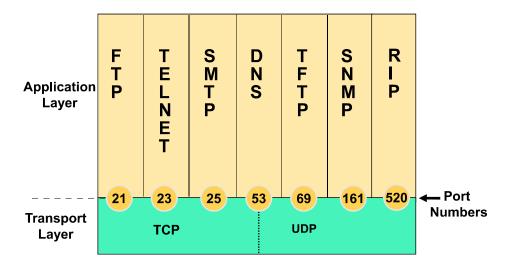
a ta ta

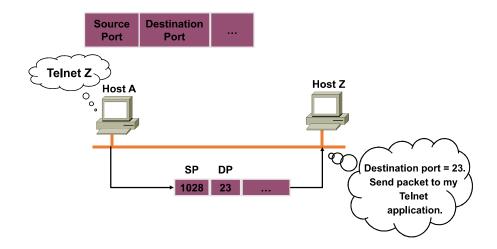
TCP/IP Protocol Stack



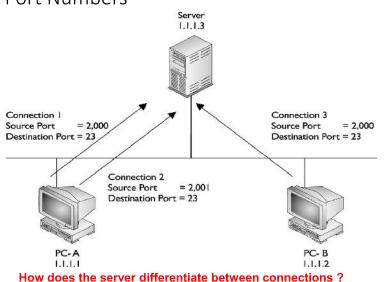
Application Layer Overview

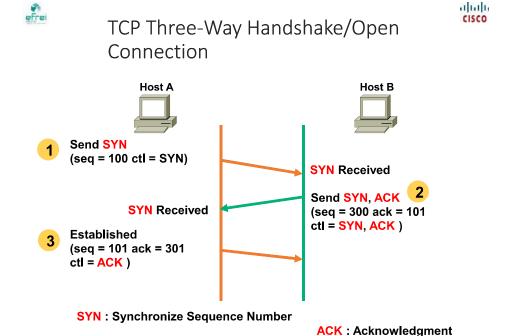
Transport Layer Overview



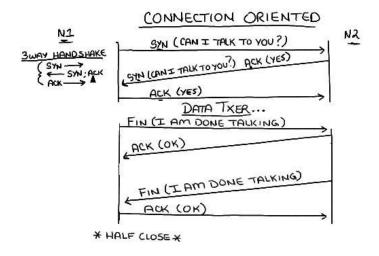

Bit 0 Bit 15 Bit 16 **Bit 31** Source Port (16) **Destination Port (16) Sequence Number (32) Acknowledgment Number (32)** 20 **Bytes** Header Reserved (6) Code Bits (6) Window (16) Length (4 Checksum (16) Urgent (16) Options (0 or 32 if Any) **Data (Varies)**

Port Numbers




TCP Port Numbers

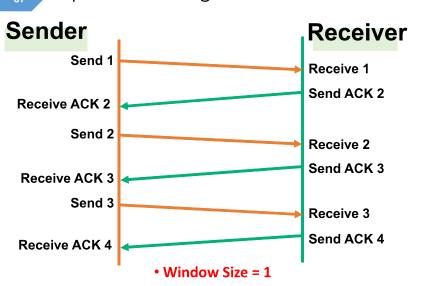
TCP Port Numbers



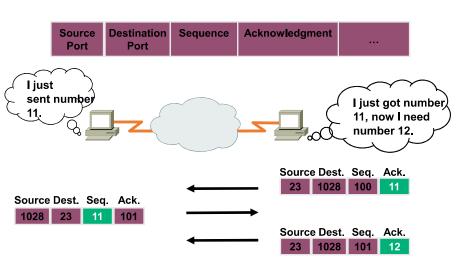
of fel to

1 1.1 1.

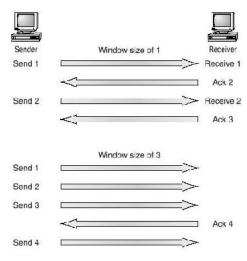
Opening & Closing Connection



Windowing


•Windowing in networking means the quantity of data segments which is measured in bytes that a machine can transmit/send on the network without receiving an acknowledgement

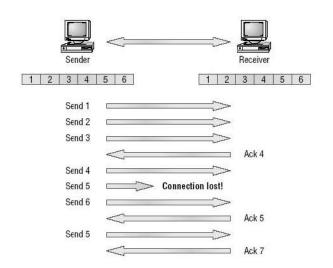
TCP Simple Acknowledgment


TCP provides full-duplex communication

Windowing

- There are two window sizes —one set to 1 and one set to 3.
- >When you've configured a window size of 1, the sending machine waits for an acknowledgment for each data segment it transmits before transmitting another
- ➤ If you've configured a window size of 3, it's allowed to transmit three data segments before an acknowledgment is received.

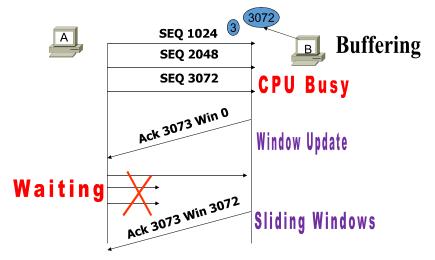
Windowing



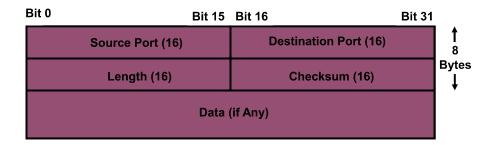
CISCO

CISCO

Transport Layer Reliable Delivery




Flow Control


- □ Another function of the transport layer is to provide optional flow control.
- □ Flow control is used to ensure that networking devices don't send too much information to the destination, overflowing its receiving buffer space, and causing it to drop the sent information
- ☐ The purpose of flow control is to ensure the destination doesn't get overrun by too much information sent by the source

dul

Flow Control

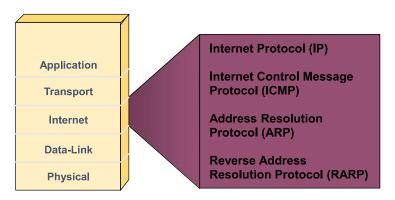
No sequence or acknowledgment fields

User Datagram Protocol (UDP) is the connectionless transport protocol in the TCP/IP protocol stack.

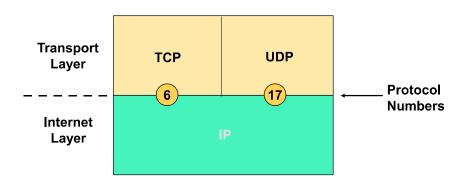
UDP is a simple protocol that exchanges datagrams, without acknowledgments or guaranteed delivery. Error processing and retransmission must be handled by higher layer protocols.

UDP is designed for applications that do not need to put sequences of segments together.

The protocols that use **UDP** include:

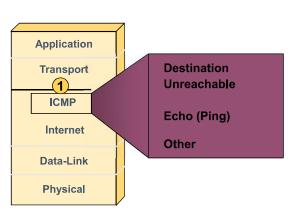

- TFTP (Trivial File Transfer Protocol)
- SNMP (Simple Network Management Protocol)
- DHCP (Dynamic Host Control Protocol)
- DNS (Domain Name System)

CISCO


TCP vs UDP

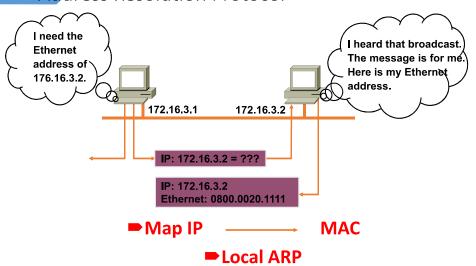
TCP	UDP	
Sequenced	Unsequenced	
Reliable	Unreliable	
Connection-oriented	Connectionless	
Virtual circuit	Low overhead	
Acknowledgments	No acknowledgment	
Windowing flow control	No windowing or flow control	

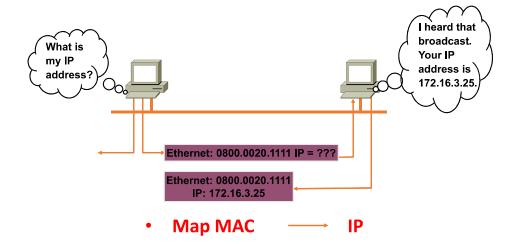
• In the OSI reference model, the network layer corresponds to the TCP/IP Internet layer.



Determines destination upper-layer protocol

Bit 0		Bit 15	Bit 16		Bit 31	
Version (4)	Header Length (4)	Priority &Type of Service (8)		Total Length (16)		1
	Identifica	ation (16)	Flags (3)	Fragment Offset (1	3)	
Time-to-	Live (8)	Protocol (8)		Header Checksum (16	6)	20 Bytes
		Source IP A	Address	(32)		ĺ
	Destination IP Address (32)					
	Options (0 or 32 if Any)					
		Data (Va	ries if A	ny)		





Reverse ARP

CISCO

1Address Resolution Protocol

Origin of Ethernet

- □ Found by Xerox Palo Alto Research Center (PARC) in 1975
- □Original designed as a 2.94 Mbps system to connect 100 computers on a 1 km cable
- □Later, Xerox, Intel and DEC drew up a standard support 10 Mbps Ethernet II
- ☐ Basis for the IEEE's 802.3 specification
- ☐ Most widely used LAN technology in the world

Category 1

Category 2

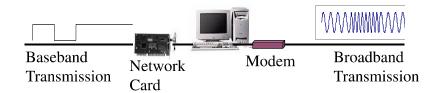
Category 3

Category 4 Category 5

Category 6

10 Mbps IEEE Standards - 10BaseT

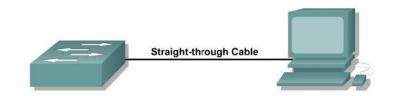
- 10BaseT ⇒ 10 Mbps, baseband, over Twisted-pair cable
- Running Ethernet over twisted-pair wiring as specified by IEEE 802.3
- Configure in a star pattern
- Twisting the wires reduces EMI
- Fiber Optic has no EMI


Baseband VS Broadband

□ Baseband Transmission

- ❖ Entire channel is used to transmit a single digital signal
- ❖ Complete bandwidth of the cable is used by a single signal
- The transmission distance is shorter
- ❖ The electrical interference is lower

□ Broadband Transmission


- Use analog signaling and a range of frequencies
- Continuous signals flow in the form of waves
- Support multiple analog transmission (channels)

1 1.1 1.

Straight-through cable

Twisted Pair Cables

Voice transmission of traditional telephone For data up to 4 Mbps, 4 pairs full-duplex

For data up to 10 Mbps, 4 pairs full-duplex

For data up to 16 Mbps, 4 pairs full-duplex

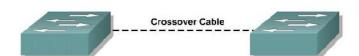
For data up to 100 Mbps, 4 pairs full-duplex For data up to 1000 Mbps, 4 pairs full-duplex

☐ Unshielded Twisted Pair Cable (UTP)

□maximum length 100 m

☐most popular

□ prone to noise

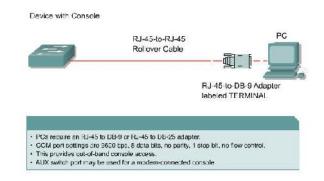


Straight-through cable pinout

Pin 1	Pir	า 1
Pin 2	Pir	12
Pin 3	Pir	13
Pin 4	Pir	14
Pin 5	Pir	15
Pin 6	Pir	16
Pin 7	Pir	17
Pin 8	Pir	n 8

Crossover cable

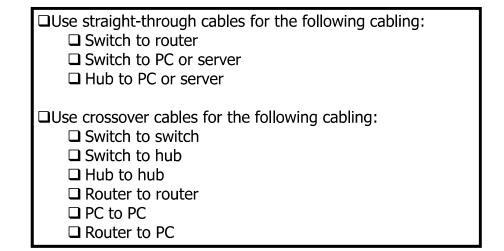
CISCO



CISCO

Crossover cable

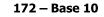
From	То	
1	3	
2	6	
3	1	
4	none	
5	none	
6	2	
7	none	
8	none	

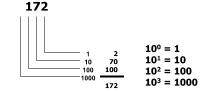

Rollover cable

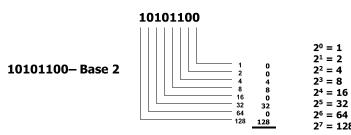
Rollover cable pinout

Pin 1	Pin 8	,
Pin 2	Pin 7	Š
Pin 3	Pin 6	j
Pin 4	Pin 5	,
Pin 5	Pin 4	
Pin 6	Pin 3	3
Pin 7	Pin 2	2
Pin 8	Pin 1	

Straight-Through or Crossover?

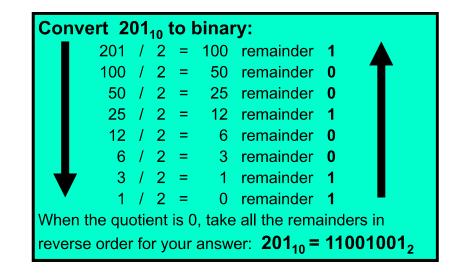






alialia cisco

Decimal to Binary



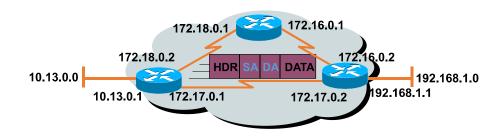
$10110_2 = (1 \times 2^4 = 16) + (0 \times 2^3 = 0) + (1 \times 2^2 = 4) + (1 \times 2^1 = 2) + (0 \times 2^0 = 0) = 22$

Place Value	128 64 32 16 8 4 2 1
Base ^{Exponent}	$2^{7} = 128$ $2^{3} = 8$ $2^{6} = 64$ $2^{2} = 4$ $2^{5} = 32$ $2^{1} = 2$ $2^{4} = 16$ $2^{0} = 1$
Number of Symbols	2
Symbols	0, 1
Rationale	Two-state (discrete binary) voltage systems made from transistors can be diverse, powerful, inexpensive, tiny and relatively immune to noise.

CISCO

Binary to Decimal Chart

Binary Value	Decimal Value	
10000000	128	
11000000	192	
11100000	224	
11110000	240	
11111000	248	
11111100	252	
11111110	254	
11111111	255	



CISCO

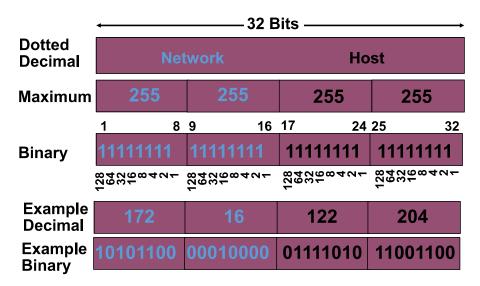
Hex to Binary to Decimal Chart

Hexadecimal Value	Binary Value	Decimal Value	
0	0000	o	
1	0001	1	
2	0010	2	
3	0011	3	
4	0100	A	
5	0101	5	
6	0110	6	
7	0111	7	
8	1000	8	
9	1001	9	
Α	1010	10	
В	1011	11	
С	1100	12	
D	1101	13	
E	1110	14	
F	1111	15	

Introduction to TCP/IP Addresses

- ■Unique addressing allows communication between end stations.
- ▶ Path choice is based on destination address.
- Location is represented by an address

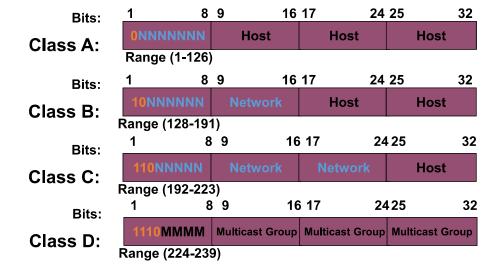
dul CISCO


IP. Address Classes

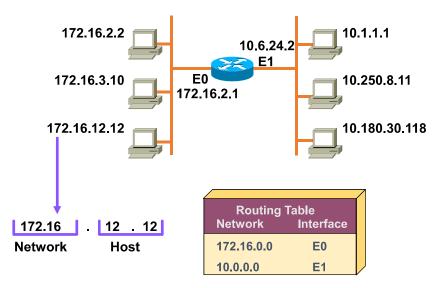
	8 Bits	8 Bits	8 Bits	8 Bits
•Class A:	Network	Host	Host	Host
•Class B:	Network	Network	Host	Host
•Class C:	Network	Network	Network	Host

•Class D: Multicast

•Class E: Research


IP Addressing

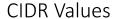
efrei


1 11 1

IP Address Classes

a ta ta

Host Addresses



Classless Inter-Domain Routing (CIDR)

- Basically the method that ISPs (Internet Service Providers) use to allocate an amount of addresses to a company, a home
- •Ex: 192.168.10.32/28
- •The slash notation (/) means how many bits are turned on (1s)

CISCO

Subnet Mask	CIDR Value
255.0.0.0	/8
255.128.0.0	/9
255.192.0.0	/10
255.224.0.0	/11
255.240.0.0	/12

Determining Available Host Addresses

Network		Но	st	
172	16	0	0	
		6 2 4 <u>5</u> 4 <u>5</u> 45	∞ ८ ७७4≈८८	N
10101100	00010000	00000000	00000000 00000001 00000011	1 2 3
		11111111 11111111	: 11111101 11111110	65534 65535
		11111111	11111111	65536
	2 ^N	$-2 = 2^{16} -$	2 = 65534	65534

1 11 1

IP Address Classes Exercise

Address	Class	Network	Host
10.2.1.1			
128.63.2.100			
201.222.5.64			
192.6.141.2			
130.113.64.16			
256.241.201.10			

IP Address Classes Exercise Answers

Address	Class	Network	Host
10.2.1.1	Α	10.0.0.0	0.2.1.1
128.63.2.100	В	128.63.0.0	0.0.2.100
201.222.5.64	С	201.222.5.0	0.0.0.64
192.6.141.2	С	192.6.141.0	0.0.0.2
130.113.64.16	В	130.113.0.0	0.0.64.16
256.241.201.10	Nonexistent		

CISCO

Formula

- □Subnetting is logically dividing the network by extending the 1's used in SNM
- □Advantage
 - □Can divide network in smaller parts
 - □ Restrict Broadcast traffic
 - **□**Security
 - □Simplified Administration

- \square Number of subnets 2×-2 Where X = number of bits borrowed
- \square Number of Hosts 2 y -2 Where y = number of 0's
- □Block Size = Total number of Address Block Size = 256-Mask

Subnetting

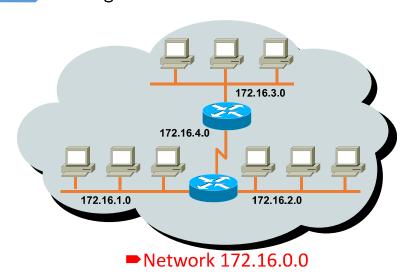
- □Classful IP Addressing SNM are a set of 255's and 0's.
- ☐ In Binary it's contiguous 1's and 0's.
- □SNM cannot be any value as it won't follow the rule of contiguous 1's and 0's.

□Possible subnet mask values

- **-**0
- **-128**
- **■192**
- **-224**
- **=**240
- **■**248 **■**252
- **⇒**254
- **⇒**255

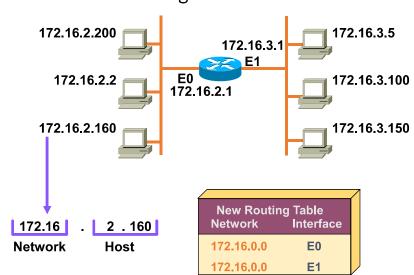
SNM = Subnet Network Mask

172.16.0.1 172.16.0.2 172.16.0.3 172.16.255.253 172.16.255.254

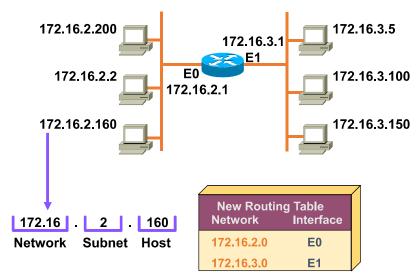

Addressing Without Subnets

•Network 172.16.0.0

172.16.0.0

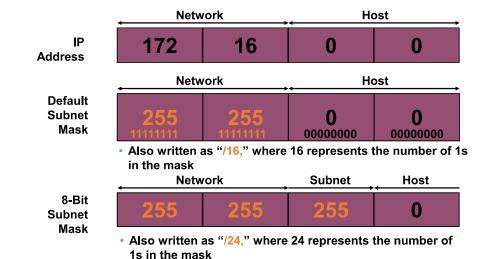

efrei

'Addressing with Subnets



Subnet Addressing

Subnet Addressing



Decimal Equivalents of Bit Patterns

128	64	32	16	8	4	2	1		
0	0	0	0	0	0	0	0	=	0
1	0	0	0	0	0	0	0	=	128
1	1	0	0	0	0	0	0	=	192
1	1	1	0	0	0	0	0	=	224
1	1	1	1	0	0	0	0	=	240
1	1	1	1	1	0	0	0	=	248
1	1	1	1	1	1	0	0	=	252
1	1	1	1	1	1	1	0	=	254
1	1	1	1	1	1	1	1	=	255

Subnet Mask

diali

Subnet Mask Without Subnets

	Netv	Network		st
172.16.2.160	10101100	00010000	00000010	10100000
255.255.0.0	11111111	11111111	00000000	00000000
	10101100	00010000	00000000	00000000
Network Number	172	16	0	0

Subnets not in use—the default

Subnet Mask with Subnets

	Network		Subnet	Host
172.16.2.160 255.255. <mark>255.</mark> 0	10101100 11111111	00010000 11111111	00000010 11111111	10100000 00000000
	10101100	00010000	01000000 254 254 254 254 254 254 255 254	00000000
Network Number	172	16	2	0

Network number extended by eight bits

Subnet Mask with Subnets (cont.)

	Network		Subnet	Host
172.16.2.160 255.255.255.192	10101100 11111111	00010000 11111111	00000010 11111111	10 <mark>100000</mark>
	10101100	00010000	00000010	1000000
Network			128 192 224 240 252 252 254 254 254	224 224 224 2252 2552 2552
Number	172	16	2	128

Network number extended by ten bits

CISCO

CISCO

Subnet Mask Exercise

Address	Subnet Mask	Class	Subnet
172.16.2.10	255.255.255.0		
10.6.24.20	255.255.240.0		
10.30.36.12	255.255.255.0		

Subnet Mask Exercise Answers

Address	Subnet Mask	Class	Subnet
172.16.2.10	255.255.255.0	В	172.16.2.0
10.6.24.20	255.255.240.0	Α	10.6.16.0
10.30.36.12	255.255.255.0	Α	10.30.36.0

172.16.2.160

172.16.2.128

172.16.2.191

172.16.2.129

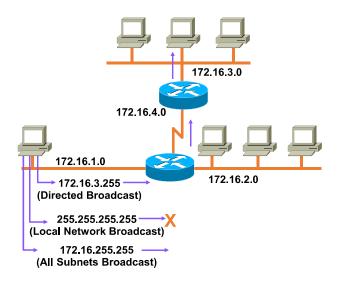
172.16.2.190

255.255.255.192

160

00000010 10100000 Host

11111111 11<mark>000000 Mask 2</mark>


00000010 10000000 Subnet 4

00000010 10111111 Broadcast

00000010 10000001 First 6

00000010 10111110 Last 7

Broadcast Addresses

class B Subnet Example

dull CISCO

IP Host Address: 172.16.2.121 Subnet Mask: 255.255.255.0

	Network	Network	Subnet	Host
172.16.2.121: 255.255.255.0:		00010000 11111111	00000010 11111111	01111001 00000000
	10101100	00010000	00000010	00000000
Broadcast:	10101100	00010000	00000010	11111111

- Subnet Address = 172.16.2.0
- ► Host Addresses = 172.16.2.1–172.16.2.254
- Broadcast Address = 172.16.2.255
- **■** Eight Bits of Subnetting

1 11 1

Subnet Planning

Addressing Summary Example

172

10101100

11111111

10101100

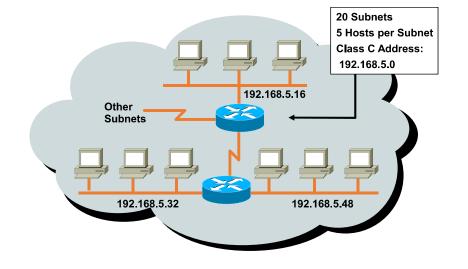
10101100

10101100

10101100

16

00010000


11111111

00010000

00010000

00010000

00010000

147

diali

4 Class C Subnet Planning Example

IP Host Address: 192.168.5.121 Subnet Mask: 255.255.255.248

	Network	Network	Network	Subnet Host	
192.168.5.121: 255.255.255.248:		10101000 11111111	00000101 11111111	01111 <mark>001 11111</mark> 000	_
Subnet: Broadcast:	11000000 11000000	10101000 10101000	00000101 00000101		

- ■Subnet Address = 192.168.5.120
- ► Host Addresses = 192.168.5.121–192.168.5.126
- **■**Broadcast Address = 192.168.5.127
- **■** Five Bits of Subnetting

Exercise

· 192.168.10.0

• /27

? - SNM

? - Block Size

?- Subnets

CISCO

Exercise

· 192.168.10.0

·/30

? - SNM

? - Block Size

?- Subnets

·/27

? - SNM - 224

? - Block Size = 256-224 = 32

?- Subnets

Subnets	10.0	10.32	10.64
FHID	10.1	10.33	
LHID	10.30	10.62	
Broadcast	10.31	10.63	

·/30

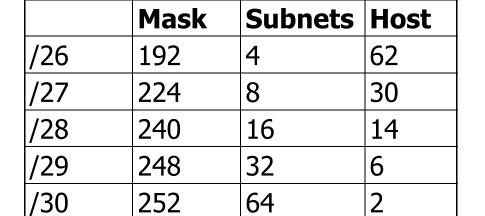
? - SNM - 252

? - Block Size = 256-252 = 4

?- Subnets

Subnets	10.0	10.4	10.8
FHID	10.1	10.5	
LHID	10.2	10.6	
Broadcast	10.3	10.7	

	Mask	Subnets	Host
/26	?	?	?
/27	?	?	?
/28	?	?	?
/29	?	?	?
/30	?	?	?



1	111	L
C	ISC	0

- Find Subnet and Broadcast address
 - 192.168.0.100/27

CISCO

Exercise

192.168.10.54 /29

□Mask?

□Subnet ?

□Broadcast?

Exercise

□192.168.10.130 /28

□Mask?

□Subnet ?

□Broadcast?

Exercise

192.168.10.193 /30

□Mask?

□Subnet?

□Broadcast?

CISCO

Exercise

192.168.1.100 /26

□Mask?

□Subnet ?

☐Broadcast?

CISCO

Exercise

□192.168.20.158 /27

□Mask?

□Subnet?

□Broadcast?

Class B

172.16.0.0 /19

Subnets?

Hosts?

Block Size ?

CISCO

cisco

172.16.0.0 /19 Subnets $2^3 - 2 = 6$ Hosts $2^{13} - 2 = 8190$

Block Size 256-224 = 32

Subnets	0.0	32.0	64.0	96.0
FHID	0.1	32.1	64.1	96.1
LHID	31.254	63.254	95.254	127.254
Broadcast	31.255	63.255	95.255	127.255

Class B

172.16.0.0 /27

Subnets?

Hosts?

Block Size ?

Class B

172.16.0.0 /27 Subnets 2^{11} -2 = 2046 Hosts 2^{5} -2 = 30 Block Size 256-224 = 32

Subnets	0.0	0.32	0.64	0.96
FHID	0.1	0.33	0.65	0.97
LHID	0.30	0.62	0.94	0.126
Broadcast	0.31	0.63	0.95	0.127

Class B

172.16.0.0 /23 Subnets ?

Hosts?

Block Size ?

CISCO

cisco

172.16.0.0 /23 Subnets 2^7 -2 = 126 Hosts 2^9 -2 = 510 Block Size 256-254 = 2

Subnets	0.0	2.0	4.0	6.0
FHID	0.1	2.1	4.1	6.1
LHID	1.254	3.254	5.254	7.254
Broadcast	1.255	3.255	5.255	7.255

Class B

172.16.0.0 /24

Subnets?

Hosts?

Block Size ?

172.16.0.0 /24

Class B

Subnets $2^8 - 2 = 254$ Hosts $2^8 - 2 = 254$

Block Size 256-255 = 1

Subnets	0.0	1.0	2.0	3.0
FHID	0.1	1.1	2.1	3.1
LHID	0.254	1.254	2.254	3.254
Broadcast	0.255	1.255	2.255	3.255

Class B

172.16.0.0 /25

Subnets?

Hosts?

Block Size ?

CISCO

CISCO

Find out Subnet and Broadcast Address

• 172.16.85.30/20

172.16.0.0 /25 Subnets $2^9 - 2 = 510$ Hosts $2^7 - 2 = 126$ Block Size 256-128 = 128

Subnets	0.0	0.128	1.0	1.128	2.0	2.128
FHID	0.1	0.129	1.1	1.129	2.1	2.129
LHID	0.126	0.254	1.126	1.254	2.126	2.254
Broadcast	0.127	0.255	1.127	1.255	2.127	2.255

1 111111

Find out Subnet and Broadcast Address

Find out Subnet and Broadcast Address

• 172.16.85.30/29

• 172.30.101.62/23

CISCO

CISCO

Find out Subnet and Broadcast Address

• 172.20.210.80/24

Exercise

• Find out the mask which gives 100 subnets for class B

Exercise

• Find out the Mask which gives 100 hosts for Class B

Class A

10.0.0.0 /10

Subnets?

Hosts?

Block Size?

CISCO

CISCO

Class A

10.0.0.0 /18

Subnets?

Hosts?

Block Size?

10.0.0.0 /10 Subnets $2^2 - 2 = 2$ Hosts $2^{2^2} - 2 = 4194302$ Block Size 256-192 = 64

Subnets	10.0	10.64	10.128	10.192
FHID	10.0.0.1	10.64.0.1	10.128.0.1	10.192.0.1
LHID	10.63.255.254	10.127.255.254	10.191.255.254	10.254.255.254
Broadcast	10.63.255.255	10.127.255.255	10.191.255.255	10.254.255.255

10.0.0.0 /18

Subnets $2^{10} - 2 = 1022$

Hosts $2^{14} - 2 = 16382$

Block Size 256-192 = 64

Subnets	10.0.0.0	10.0.64.0	10.0.128.0	10.0.192.0
FHID	10.0.0.1	10.0.64.1	10.0.128.1	10.0.192.1
LHID	10.0.63.254	10.0.127.254	10.0.191.254	10.0.254.254
Broadcast	10.0.63.255	10.0.127.255	10.0.191.255	10.0.254.255

Broadcast Addresses Exercise

/				
Address	Subnet Mask	Class	Subnet	Broadcast
201.222.10.60	255.255.255.248			
15.16.193.6	255.255.248.0			
128.16.32.13	255.255.255.252			
153.50.6.27	255.255.255.128			

CISCO

Broadcast Addresses Exercise Answers

Address	Subnet Mask	Class	Subnet	Broadcast
201.222.10.60	255.255.255.248	С	201.222.10.56	201.222.10.63
15.16.193.6	255.255.248.0	Α	15.16.192.0	15.16.199.255
128.16.32.13	255.255.255.252	В	128.16.32.12	128.16.32.15
153.50.6.27	255.255.255.128	В	153.50.6.0	153.50.6.127

CISCO

VLSM

- VLSM is a method of designating a different subnet mask for the same network number on different subnets
- Can use a long mask on networks with few hosts and a shorter mask on subnets with many hosts
- ■With VLSMs we can have different subnet masks for different subnets.

efrei

CISCO

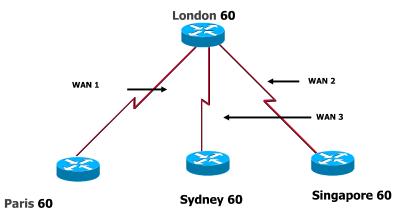
Variable Length Subnetting

≽WAN 3

➤VLSM allows us to use one class C address to design a networking scheme to meet the following requirements:

2 Hosts

≻Paris	60 Hosts
≻London	28 Hosts
≽Sydney	12 Hosts
≽Singapore	12 Hosts
≽WAN 1	2 Hosts
≻WAN 2	2 Hosts

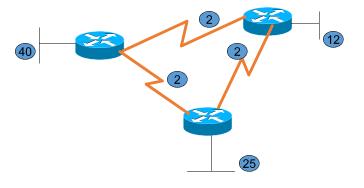

Networking Scheme

WAN 192.168.10.129 and 130
192.168.10.128/30
2
WAN 192.198.10.133 and 134
192.168.10.128/30
WAN 192.198.10.137 and 138
192.168.10.136/30

Paris Sydney 192.168.10.96/28 192.168.10.0/26

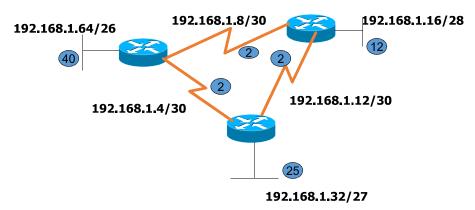
Singapore 192.168.10.112/28

Networking Requirements



□In the example above, a /26 was used to provide the 60 addresses for Paris and the other LANs. There are no addresses left for WAN links

CISCO

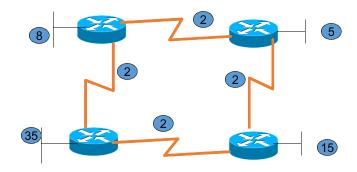

VLSM Exercise

192.168.1.0

VLSM Exercise

192.168.1.0

efrei

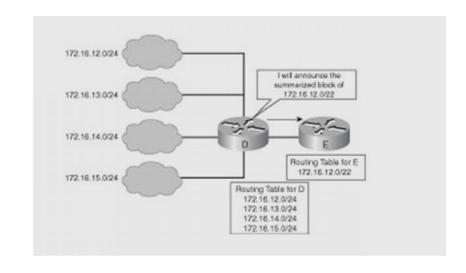


CISCO

Summarization

- ■Summarization, also called route aggregation, allows routing protocols to advertise many networks as one address.
- ■The purpose of this is to reduce the size of routing tables on routers to save memory
- ■Route summarization (also called route aggregation or supernetting) can reduce the number of routes that a router must maintain
- ■Route summarization is possible only when a proper addressing plan is in place
- ■Route summarization is most effective within a subnetted environment when the network addresses are in contiguous blocks

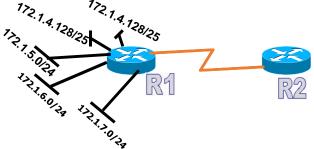
VLSM Exercise



192.168.1.0

CISCO

Summarization



Supernetting

	Network	Network	Network	Subnet
172.16.12.0 172.16.13.0 172.16.14.0 172.16.15.0	11000000 11000000	10101000 (10101000 (16 8 4 2 1 00001100 00001101 00001110	00000000 00000000 00000000
255.255.255.0	11111111	11111111	11111111	00000000

Supernetting Question

 \Box What is the most efficient summarization that R1 can use to advertise its networks to R2?

A. 172.1.4.0/24172.1.5.0/24172.1.6.0/24172.1.7.0/24

C. 172.1.4.0/25172.1.4.128/25172.1.5.0/24172.1.6.0/24172.1.7.0/24 D. 172.1.0.0/21

E. 172.1.4.0/22

Supernetting

	Network	Network	Network	Subnet
172.16.12.0 172.16.13.0 172.16.14.0 172.16.15.0	11000000 11000000 11000000 11000000	10101000 10101000	16 8 4 2 1 000011 00 000011 01 000011 10 000011 11	00000000 00000000 00000000
255.255.252.0	11111111	11111111	11111100	00000000
172.16. 172.16. 172.16. 172.16.	13.0/24 14.0/24	2.16.12.0/22		